Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38693628

RESUMO

The therapeutic potential of small interfering RNA (siRNA) is monumental, offering a pathway to silence disease-causing genes with precision. However, the delivery of siRNA to target cells in-vivo remains a formidable challenge, owing to degradation by nucleases, poor cellular uptake and immunogenicity. This overview examines recent advancements in the design and application of nucleic acid-based integrated macromolecular complexes for the efficient delivery of siRNA. We dissect the innovative delivery vectors developed in recent years, including lipid-based nanoparticles, polymeric carriers, dendrimer complexes and hybrid systems that incorporate stimuli-responsive elements for targeted and controlled release. Advancements in bioconjugation techniques, active targeting strategies and nanotechnology-enabled delivery platforms are evaluated for their contribution to enhancing siRNA delivery. It also addresses the complex interplay between delivery system design and biological barriers, highlighting the dynamic progress and remaining hurdles in translating siRNA therapies from bench to bedside. By offering a comprehensive overview of current strategies and emerging technologies, we underscore the future directions and potential impact of siRNA delivery systems in personalized medicine.

2.
Diabetologia ; 67(6): 995-1008, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38517484

RESUMO

AIMS/HYPOTHESIS: Type 1 diabetes is an heterogenous condition. Characterising factors explaining differences in an individual's clinical course and treatment response will have important clinical and research implications. Our aim was to explore type 1 diabetes heterogeneity, as assessed by clinical characteristics, autoantibodies, beta cell function and glycaemic outcomes, during the first 12 months from diagnosis, and how it relates to age at diagnosis. METHODS: Data were collected from the large INNODIA cohort of individuals (aged 1.0-45.0 years) newly diagnosed with type 1 diabetes, followed 3 monthly, to assess clinical characteristics, C-peptide, HbA1c and diabetes-associated antibodies, and their changes, during the first 12 months from diagnosis, across three age groups: <10 years; 10-17 years; and ≥18 years. RESULTS: The study population included 649 individuals (57.3% male; age 12.1±8.3 years), 96.9% of whom were positive for one or more diabetes-related antibodies. Baseline (IQR) fasting C-peptide was 242.0 (139.0-382.0) pmol/l (AUC 749.3 [466.2-1106.1] pmol/l × min), with levels increasing with age (p<0.001). Over time, C-peptide remained lower in participants aged <10 years but it declined in all age groups. In parallel, glucose levels progressively increased. Lower baseline fasting C-peptide, BMI SD score and presence of diabetic ketoacidosis at diagnosis were associated with lower stimulated C-peptide over time. HbA1c decreased during the first 3 months (p<0.001), whereas insulin requirement increased from 3 months post diagnosis (p<0.001). CONCLUSIONS/INTERPRETATION: In this large cohort with newly diagnosed type 1 diabetes, we identified age-related differences in clinical and biochemical variables. Of note, C-peptide was lower in younger children but there were no main age differences in its rate of decline.


Assuntos
Autoanticorpos , Peptídeo C , Diabetes Mellitus Tipo 1 , Hemoglobinas Glicadas , Humanos , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/epidemiologia , Adolescente , Criança , Masculino , Feminino , Peptídeo C/sangue , Adulto , Adulto Jovem , Pré-Escolar , Autoanticorpos/sangue , Hemoglobinas Glicadas/metabolismo , Glicemia/metabolismo , Estudos de Coortes , Lactente , Europa (Continente)/epidemiologia , Pessoa de Meia-Idade , Células Secretoras de Insulina/metabolismo
3.
Turk J Phys Med Rehabil ; 70(1): 105-114, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38549828

RESUMO

Objectives: The study aimed to compare the effect of cranial electrical stimulation (CES) and transcranial direct current stimulation (tDCS) in improving cognition among individuals with mild traumatic brain injury. Patients and methods: The pretest-posttest randomized controlled study was conducted between November 2020 and March 2022. Seventy-two patients (64 males, 8 females; mean age: 40.5±9.5 years; range, 18 to 45 years) experiencing cognitive impairment within three months of traumatic brain injury were recruited. Participants were randomly assigned into two groups: Group 1 (CES with cognitive training, n=36) and Group 2 (tDCS with cognitive training, n=36). Participants were blinded in the study. Both groups received 30-min sessions of neuromodulation along with 30 min of cognitive training five days a week for four weeks. The patients were assessed at baseline and at the end of two and four weeks of intervention. The primary outcome measure was the Montreal Cognition Assessment (MoCA), and the secondary outcome measure was the Galveston Orientation Amnesia Test (GOAT). Results: Demographic and baseline characteristics depicted normal distribution for both groups (p>0.05). Within group analyses of both groups demonstrated significant differences for both outcome measures (MoCA: p=0.001; GOAT: p=0.001). Between group analyses of MoCA showed significant improvement with p-value of 0.001 while GOAT exhibited p-value of 0.002 showing significant difference between the two groups. Time group interaction effect and covariance analyses depicted significant improvement with p-value of 0.001 for both outcome measures with excellent effect size >0.80. Conclusion: Cranial electrical stimulation was a more effective noninvasive neuromodulatory device than tDCS in improving cognition among individuals with traumatic brain injury.

4.
Mar Drugs ; 22(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38535461

RESUMO

Alginate lyase (AL) is a polysaccharide-degrading enzyme that can degrade alginate by hydrolyzing glycosidic bonds and produces unsaturated alginate oligosaccharides (AOSs). These AOSs have wide therapeutic and nutraceutical applications. However, to produce alginate oligosaccharides in a cost-effective manner is challenging due to the low availability and high cost of this degrading enzyme. Immobilization of the enzyme facilitates industrial applications owing to its stability, reusability, and cost-effectiveness. This study was focused on the enhancement of the properties of alginate lyase and improvement of the production of AOS. Alginate lyase was immobilized on magnetic nanoparticles (NPs) using glutaraldehyde as the crosslinker. The study showed that the maximum binding achieved between NPs and protein in the enzyme was 71% at a ratio of 1:150 NP:protein. As a result of immobilization, the optimum activity of free enzyme which was obtained at 37 °C and pH 7.4 changed to 45 °C and pH 9. Furthermore, the enzyme was thermostable at 45 °C for 3 h with up to 50% reusability for six consecutive cycles. Storage stability after 15 days showed ~67% relative hydrolysis of alginate. The free alginate lyase (25 IU) showed 76% raw biomass (seaweed) hydrolysis which is higher compared to 63% provided by the immobilized enzyme. As a result of efficient hydrolysis, AOSs with molecular weight profile of 370-1040 kDa were produced and detected using HPLC.


Assuntos
Alginatos , Polissacarídeo-Liases , Oligossacarídeos , Biomassa
5.
Parkinsonism Relat Disord ; 121: 106027, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377657

RESUMO

INTRODUCTION: Tele-rehabilitation has lately emerged as a promising medium for increasing patient adherence with significant positive results. One of the most prevalent neurological diseases affecting movement is Parkinson's disease (PD), which causes a variety of motor and non-motor symptoms among patients. Consequentially, the study was designed to compare the efficacy of group tele-rehabilitation with individual tele-rehabilitation in improving quality of life (QoL) among subjects with PD. METHOD: A two-group pretest-posttest, non-randomized clinical study recruited 68 subjects and classified them into two groups, i.e., Group A (group therapy, n = 36) and Group B (individual therapy, n = 32). Groups A and B received a supervised protocol consisting of a 40-min session on alternate days/week for twelve weeks via the WhatsApp Messenger application through group and individual therapy, respectively. The Parkinson's disease questionnaire (PDQ-39), mental and physical components of the Short Form Survey (SF-12) were used as primary outcome variables, while the Satisfaction questionnaire was used as a secondary outcome variable. RESULT: The p-values related to within-group analyses were <0.05 except SF-12 PCS >0.05 in Group A and <0.05 in Group B. While the p-values related to between-group analyses were <0.05 except for pre-scores of SF-12 (MCS and PCS). The effect sizes for PDQ-39, SF-12 (MCS), and SF-12 (PCS) were -2.37, 3.36, and 0.66 in Group A and 1.95, 2.69, and 2.03 in Group B, respectively. CONCLUSION: The study concluded that group tele-rehabilitation is more effective in improving QoL among subjects with PD as compared to individual tele-rehabilitation. Clinical trial Registration NoCTRI/2022/04/041818.


Assuntos
Doença de Parkinson , Telerreabilitação , Humanos , Qualidade de Vida , Doença de Parkinson/diagnóstico , Movimento
6.
J Spinal Cord Med ; : 1-11, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241510

RESUMO

INTRODUCTION: Cervical radiculopathy is one of those disabling conditions which results in central and peripheral pain and thus affects the quality of life. Transcutaneous Electrical Nerve Stimulation (TENS) and exercises produce analgesic effect but their long-term effect has not been available to date. Transcranial Direct Current stimulation (tDCS) is known to produce promising effects on central pain by targeting cortical activity. PURPOSE: To determine the combined effect of tDCS and TENS with exercises on pain and quality of life in patients with cervical radiculopathy. METHOD: Forty four patients (male: female = 26:18) of the age group 18-50 years were recruited and randomly allocated into the experimental group and control group. The experimental group received active anodal tDCS for 20 min with an intensity of 2 mA, while the control group received sham anodal tDCS. TENS over the pain distribution area for 20 min with 5 Hz intensity and 80-150 ms pulse duration followed by neck-specific exercises were given in both groups. This protocol was given 5 days a week for 4 weeks. Pre and post-assessments were obtained through outcome measures that the Numeric Pain Rating Scale and Neck Disability Index for the measurement of pain, functional disability, and quality of life. RESULT: Paired t-test/Wilcoxon-Signed Rank test, and Index and Mann-Whitney U test were used to compare the demographic variables within and across the groups, respectively for Neck Disability for Numeric Pain Rating Scale, keeping the P-value < 0.05 as significant. One-way repeated-measures analysis of variance (ANOVA) was applied to determine the between-subject factor differences. Post hoc tests with Bonferroni correction for repeated analyses were performed. Results depicted a significant effect for NDI (P = 0.001 for both groups) and NPRS (P = 0.003 for the experimental group and 0.007 for the control group). Significant Interaction effect (time*group) was observed for NDI (F = 42, 5382.77) and NPRS (F = 42, 1844.57) with a P-value of 0.001 for both outcome measures. Clinical significance was observed for both outcome measures having a mean difference in 50.21 and 4.57 for NDI and NPRS, respectively compared with the established MCID of 13.2 and 2.2 scores for respective outcome measures. CONCLUSION: It was concluded that active tDCS along with TENS and exercise intervention was effective on pain, disability, and quality of life in patients with cervical radiculopathy.

8.
Recent Pat Nanotechnol ; 18(2): 130-139, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37904556

RESUMO

The increasing incidence of breast cancer and the associated morbidity due to higher metastasis created the urge to develop a nanocarrier that can be used as a potent therapeutic carrier with targeting efficacy. The use of superparamagnetic nanoparticles in breast cancer research and treatment has gained considerable attention in recent years. Magnetic nanoparticles (MNPs) can be used to construct nanocarriers since they possess superior properties such as superparamagnetism, easy surface functionalization to attach ligands, and non-immunogenic. MNPs are superior carriers that are used to target cancer cells without harming the normal cells in the body, which leads to therapeutic efficacy in the body. Along with their established anticancer potential and enhanced drug concentration at endosomal pH, the superparamagnetic property of MNPs was further exploited for their applications in reticuloendothelial uptake, drug delivery, medical imaging, and theranostics applications in breast cancer. Moreover, the clinical translational of MNPs, along with future prospects and key challenges in vivo, have been duly presented in the final review. The scientists preferred the ongoing research in MNPs due to their high biocompatibility and ease of targeting at molecular and cellular levels. The review highlighted the in vitro and in vivo research and patent supported data for potential use of MNPs for the treatment of breast cancer.


Assuntos
Neoplasias da Mama , Nanopartículas de Magnetita , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Nanopartículas de Magnetita/uso terapêutico , Nanopartículas de Magnetita/química , Patentes como Assunto , Sistemas de Liberação de Medicamentos , Magnetismo
9.
Semin Musculoskelet Radiol ; 27(5): 522-528, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37816360

RESUMO

Scheuermann's disease is a rigid progressive kyphosis occurring in late childhood to adolescence. It is the most common cause of sagittal imbalance and angular progressive kyphosis in adolescents associated with back pain. The exact etiology of the disease is unclear, but it is characterized by defective growth of the end plate that may result from excessive mechanical stress on a weakened end plate during spinal growth. Several other theories have been proposed, and it is thought to be a multifactorial disease occurring as a result of the interplay of multiple factors. The radiographic features consist of anterior vertebral body wedging, irregular end plates, Schmorl's nodes, and intervertebral disk degeneration. The natural history and evolution of this disease is also unknown. Conservative management with physiotherapy, rehabilitation, and bracing is the first line of treatment. Mechanical bracing helps prevent further progression of the kyphotic deformity. Surgery is mostly indicated in patients with failure of conservative management, with neurologic compromise, and for cosmetic reasons.


Assuntos
Doença de Scheuermann , Adolescente , Humanos , Criança , Doença de Scheuermann/diagnóstico por imagem , Doença de Scheuermann/terapia , Doença de Scheuermann/complicações , Coluna Vertebral
10.
Artigo em Inglês | MEDLINE | ID: mdl-37702173

RESUMO

The development of an efficient and innovative drug delivery system is essential to improve the pharmacological parameters of the medicinal compound or drug. The technique or manner used to improve the pharmacological parameters plays a crucial role in the delivery system. In the current scenario, various drug delivery systems are available where nanotechnology has firmly established itself in the field of drug delivery. One of the most prevalent elements is carbon with its allotropic modifications such as graphene-based nanomaterials, carbon nanotubes, carbon dots, and carbon fullerenes, these nanomaterials offer notable physiochemical and biochemical properties for the delivery applications due to their smaller size, surface area, and ability to interact with the cells or tissues. The exceptional physicochemical properties of carbon-based 2D nanomaterials, such as graphene and carbon nanotubes, make them attractive candidates for drug delivery systems. These nanomaterials offer a large surface area, high drug loading capacity, and tunable surface chemistry, enabling efficient encapsulation, controlled release, and targeted delivery of therapeutic agents. These properties of the nanomaterials can be exploited for drug delivery applications, like assisting the target delivery of drugs and aiding combination molecular imaging. This review emphasizes the drug delivery system and the role of carbon-based nanomaterials in drug delivery systems. Carbon-based 2D nanomaterials present a wealth of opportunities for advanced drug delivery systems. Their exceptional properties and versatility offers great potential in improving therapeutic efficacy, minimizing side effects, and enabling personalized medicine.

12.
Biomolecules ; 13(4)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37189396

RESUMO

Pancreatic ß cells are central to glycemic regulation through insulin production. Studies show autophagy as an essential process in ß cell function and fate. Autophagy is a catabolic cellular process that regulates cell homeostasis by recycling surplus or damaged cell components. Impaired autophagy results in ß cell loss of function and apoptosis and, as a result, diabetes initiation and progress. It has been shown that in response to endoplasmic reticulum stress, inflammation, and high metabolic demands, autophagy affects ß cell function, insulin synthesis, and secretion. This review highlights recent evidence regarding how autophagy can affect ß cells' fate in the pathogenesis of diabetes. Furthermore, we discuss the role of important intrinsic and extrinsic autophagy modulators, which can lead to ß cell failure.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Humanos , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus/metabolismo , Insulina/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Autofagia/fisiologia
13.
Front Endocrinol (Lausanne) ; 14: 1128523, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113489

RESUMO

Objective: EndoC-ßH5 is a newly established human beta-cell model which may be superior to previous model systems. Exposure of beta cells to pro-inflammatory cytokines is widely used when studying immune-mediated beta-cell failure in type 1 diabetes. We therefore performed an in-depth characterization of the effects of cytokines on EndoC-ßH5 cells. Methods: The sensitivity profile of EndoC-ßH5 cells to the toxic effects of interleukin-1ß (IL-1ß), interferon γ (IFNγ) and tumor necrosis factor-α (TNFα) was examined in titration and time-course experiments. Cell death was evaluated by caspase-3/7 activity, cytotoxicity, viability, TUNEL assay and immunoblotting. Activation of signaling pathways and major histocompatibility complex (MHC)-I expression were examined by immunoblotting, immunofluorescence, and real-time quantitative PCR (qPCR). Insulin and chemokine secretion were measured by ELISA and Meso Scale Discovery multiplexing electrochemiluminescence, respectively. Mitochondrial function was evaluated by extracellular flux technology. Global gene expression was characterized by stranded RNA sequencing. Results: Cytokines increased caspase-3/7 activity and cytotoxicity in EndoC-ßH5 cells in a time- and dose-dependent manner. The proapoptotic effect of cytokines was primarily driven by IFNγ signal transduction. Cytokine exposure induced MHC-I expression and chemokine production and secretion. Further, cytokines caused impaired mitochondrial function and diminished glucose-stimulated insulin secretion. Finally, we report significant changes to the EndoC-ßH5 transcriptome including upregulation of the human leukocyte antigen (HLA) genes, endoplasmic reticulum stress markers, and non-coding RNAs, in response to cytokines. Among the differentially expressed genes were several type 1 diabetes risk genes. Conclusion: Our study provides detailed insight into the functional and transcriptomic effects of cytokines on EndoC-ßH5 cells. This information should be useful for future studies using this novel beta-cell model.


Assuntos
Citocinas , Diabetes Mellitus Tipo 1 , Humanos , Transcriptoma , Caspase 3/genética , Interferon gama/farmacologia , Quimiocinas
14.
Biotechnol Adv ; 66: 108149, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37030554

RESUMO

Glycosylation-mediated post-translational modification is critical for regulating many fundamental processes like cell division, differentiation, immune response, and cell-to-cell interaction. Alterations in the N-linked or O-linked glycosylation pattern of regulatory proteins like transcription factors or cellular receptors lead to many diseases, including cancer. These alterations give rise to micro- and macro-heterogeneity in tumor cells. Here, we review the role of O- and N-linked glycosylation and its regulatory function in autoimmunity and aberrant glycosylation in cancer. The change in cellular glycome could result from a change in the expression of glycosidases or glycosyltransferases like N-acetyl-glucosaminyl transferase V, FUT8, ST6Gal-I, DPAGT1, etc., impact the glycosylation of target proteins leading to transformation. Moreover, the mutations in glycogenes affect glycosylation patterns on immune cells leading to other related manifestations like pro- or anti-inflammatory effects. In recent years, understanding the glycome to cancer indicates that it can be utilized for both diagnosis/prognosis as well as immunotherapy. Studies involving mass spectrometry of proteome, site- and structure-specific glycoproteomics, or transcriptomics/genomics of patient samples and cancer models revealed the importance of glycosylation homeostasis in cancer biology. The development of emerging technologies, such as the lectin microarray, has facilitated research on the structure and function of glycans and glycosylation. Newly developed devices allow for high-throughput, high-speed, and precise research on aberrant glycosylation. This paper also discusses emerging technologies and clinical applications of glycosylation.


Assuntos
Neoplasias , Humanos , Glicosilação , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Glicosiltransferases/metabolismo , Lectinas/metabolismo , Imunoterapia , Polissacarídeos/química
15.
Assay Drug Dev Technol ; 21(2): 48-64, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36856471

RESUMO

Liposomes are unique novel drug delivery carriers that favor the effective transportation of pharmaceuticals. These vesicles acquire one or more phospholipid bilayer membranes, and an inner aqueous core can carry both aqueous and lipid drugs. While hydrophilic molecules can be confined in the aqueous core, hydrophobic molecules are injected into the bilayer membrane. Liposomes have many benefits as a drug delivery method, including biocompatibility, the capacity to carry large drug payloads, and a variety of physicochemical and biological parameters that can be altered to influence their biological characteristics. In addition, being a size of 10-100 nm range can have numerous additional benefits, including enhanced pharmacokinetics, clever escape from the reticuloendothelial system, greater in vivo stability, longer and site-specific administration, and increased internalization in tumor tissue (enhanced permeability and retention impact). The current review focuses on the structural composition of liposomes, formulation technologies, and suitable case studies for optimizing biopharmaceutical performance. Moreover, clinical trials and marketed formulations of liposomes have been also stated in the prior art.


Assuntos
Lipossomos , Fosfolipídeos , Lipossomos/química , Fosfolipídeos/química , Sistemas de Liberação de Medicamentos , Portadores de Fármacos
16.
Diabetes Care ; 46(5): 1014-1018, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36867433

RESUMO

OBJECTIVE: To examine whether iron intake and genetically determined iron overload interact in predisposing to the development of childhood islet autoimmunity (IA) and type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS: In The Environmental Determinants of Diabetes in the Young (TEDDY) study, 7,770 genetically high-risk children were followed from birth until the development of IA and progression to T1D. Exposures included energy-adjusted iron intake in the first 3 years of life and a genetic risk score (GRS) for increased circulating iron. RESULTS: We found a U-shaped association between iron intake and risk of GAD antibody as the first autoantibody. In children with GRS ≥2 iron risk alleles, high iron intake was associated with an increased risk of IA, with insulin as first autoantibody (adjusted hazard ratio 1.71 [95% CI 1.14; 2.58]) compared with moderate iron intake. CONCLUSIONS: Iron intake may alter the risk of IA in children with high-risk HLA haplogenotypes.


Assuntos
Diabetes Mellitus Tipo 1 , Sobrecarga de Ferro , Ilhotas Pancreáticas , Criança , Humanos , Lactente , Autoimunidade/genética , Ferro da Dieta , Ferro , Fatores de Risco , Autoanticorpos/genética , Sobrecarga de Ferro/genética , Predisposição Genética para Doença
17.
Diabetologia ; 66(6): 1071-1083, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36907892

RESUMO

AIMS/HYPOTHESIS: We previously demonstrated that N-glycosylation of plasma proteins and IgGs is different in children with recent-onset type 1 diabetes compared with their healthy siblings. To search for genetic variants contributing to these changes, we undertook a genetic association study of the plasma protein and IgG N-glycome in type 1 diabetes. METHODS: A total of 1105 recent-onset type 1 diabetes patients from the Danish Registry of Childhood and Adolescent Diabetes were genotyped at 183,546 genetic markers, testing these for genetic association with variable levels of 24 IgG and 39 plasma protein N-glycan traits. In the follow-up study, significant associations were validated in 455 samples. RESULTS: This study confirmed previously known plasma protein and/or IgG N-glycosylation loci (candidate genes MGAT3, MGAT5 and ST6GAL1, encoding beta-1,4-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase, alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase and ST6 beta-galactoside alpha-2,6-sialyltransferase 1 gene, respectively) and identified novel associations that were not previously reported for the general European population. First, novel genetic associations of IgG-bound glycans were found with SNPs on chromosome 22 residing in two genomic intervals close to candidate gene MGAT3; these include core fucosylated digalactosylated disialylated IgG N-glycan with bisecting N-acetylglucosamine (GlcNAc) (pdiscovery=7.65 × 10-12, preplication=8.33 × 10-6 for the top associated SNP rs5757680) and core fucosylated digalactosylated glycan with bisecting GlcNAc (pdiscovery=2.88 × 10-10, preplication=3.03 × 10-3 for the top associated SNP rs137702). The most significant genetic associations of IgG-bound glycans were those with MGAT3. Second, two SNPs in high linkage disequilibrium (missense rs1047286 and synonymous rs2230203) located on chromosome 19 within the protein coding region of the complement C3 gene (C3) showed association with the oligomannose plasma protein N-glycan (pdiscovery=2.43 × 10-11, preplication=8.66 × 10-4 for the top associated SNP rs1047286). CONCLUSIONS/INTERPRETATION: This study identified novel genetic associations driving the distinct N-glycosylation of plasma proteins and IgGs identified previously at type 1 diabetes onset. Our results highlight the importance of further exploring the potential role of N-glycosylation and its influence on complement activation and type 1 diabetes susceptibility.


Assuntos
Diabetes Mellitus Tipo 1 , Adolescente , Criança , Humanos , Glicosilação , Diabetes Mellitus Tipo 1/genética , Glicômica/métodos , Seguimentos , N-Acetilglucosaminiltransferases/genética , Imunoglobulina G/metabolismo , Proteínas Sanguíneas/metabolismo , Polissacarídeos/metabolismo
19.
Noncoding RNA ; 8(5)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36287121

RESUMO

Circular RNAs (circRNAs) have recently been implicated in impaired ß-cell function in diabetes. Using microarray-based profiling of circRNAs in human EndoC-ßH1 cells treated with pro-inflammatory cytokines, this study aimed to investigate the expression and possible regulatory roles of circRNAs in human ß cells. We identified ~5000 ß-cell-expressed circRNAs, of which 84 were differentially expressed (DE) after cytokine exposure. Pathway analysis of the host genes of the DE circRNAs revealed the enrichment of cytokine signaling pathways, indicative of circRNA transcription from inflammatory genes in response to cytokines. Multiple binding sites for ß-cell-enriched microRNAs and RNA-binding proteins were observed for the highly upregulated circRNAs, supporting their function as 'sponges' or 'decoys'. We also present evidence for circRNA sequence conservation in multiple species, the presence of cytokine-induced regulatory elements, and putative protein-coding potential for the DE circRNAs. This study highlights the complex regulatory potential of circRNAs, which may play a crucial role during immune-mediated ß-cell destruction in type 1 diabetes.

20.
Semin Musculoskelet Radiol ; 26(3): 359-360, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35654101

RESUMO

Charles Thurstan Holland was the first radiologist in the world and also the founder of the first radiology department. In the early days, radiographs were used primarily in the musculoskeletal system. Holland contributed significantly to the understanding of musculoskeletal radiology as seen on radiographs, including the appearance of ossification centers and accessory ossicles. The small triangular metaphyseal fragment in Salter-Harris type 2 fractures is called the "Thurstan Holland fragment."


Assuntos
Radiologia , Osso e Ossos , Extremidades , Humanos , Radiografia , Radiologistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA